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For classical gases of particles interacting through nonnegative, many-body 
interactions of short range it is verified that the corresponding grand canonical 
Gibbs measures have the global Markov property for sufficiently low values of 
the chemical activity. This yields the existence of a (nonsymmetric in general) 
transfer matrix formalism for such systems. 
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1. I N T R O D U C T I O N  

One of the fundamental tools used to study the classical statistical 
mechanical systems that live on lattices in R a is the transfer matrix for- 
malism. It is an expecially useful tool wherever the interactions in the given 
lattice systems are short-ranged. The fruitful applications of this method 
include solving exactly the thermodynamics for a large class of one- and 
two-dimensional lattice spin systems. (~/Modest application yields the input 
to study the particle spectrum properties in the lattice gauge theories. (2) 
There are many other important applications of the transfer matrix 
formalism. From this follows the importance of establishing the possibility 
of using transfer matrix analysis to extract some information about the 
system under consideration. 

Compared to the lattice case there are many fewer results on the trans- 
fer matrix formalism for a continuous system of classical statistical 
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mechanics (including the Euclidean field theory models). The existence of 
the symmetric transfer matrix for the Euclidean field theory can be deduced 
from Osterwalder-Schrader positivity. ~3) However, with regard to the 
theory of classical gases, there is no such kind of positivity (excluding some 
special cases). There are some results establisting the existence of the 
transfer matrix formalism for the classical gas theory, but they describe 
either finite-volume situations, (4) one-dimensional gas, (5'6) or neutral 
systems of particles interacting via some special two-body, sufficiently 
regular potential of positive type. (7) 

In this paper I prove the existence of the transfer matrix formalism for 
a large class of classical gases in which the interaction is given by an 
arbitrary, repulsive many-body potential of short range. The proof I 
present here is very simple. I obtain the proof by verifying that the grand 
canonical ensemble Gibbs measure has the global Markov property. This 
yields the existence of the Markov process with values in the space of 
locally finite configurations that are located in a certain slice of the space 
R a. The transition function of this process plays the role of the transfer 
matrix and the grand canonical Gibbs equilibrium measure plays the role 
of the path space measure of the corresponding process. The restriction to 
the pure repulsive interactions is the price we have to pay for a very simple 
verification of the global Markov property presented here. Such a property 
of the Gibbs measure is not easy to verify already on the level of classical 
spin systems. (32) For the verification of the global Markov property in the 
case of lattic systems see refs. 9-13 and 32, and for continous systems see 
refs. 14-17. 

The method used in this paper to verify the global Markov property 
of the corresponding Gibbs measure is a simple analysis of the correspond- 
ing Kirkwood-Salsburg-like operators using some elementary facts from 
the general theory of the dual pair of Banach spaces. 

To extend the result to the arbitrary many-body stable interactions 
one has to work with an adaptation of the Dobrushin theory ~18'19) to this 
case and it is much harder than the method presented here. Such an 
extension will be presented elsewhere. 

This paper is organized as follows. In Section 2, I collect some basic 
definitions from the theory of classical gases and formulate the result in a 
precise way. Section 3 includes the details of the proof for the case of two- 
body interactions. This is done for a pedagogical exposition the our 
method. Sections 4 and 5 contain extensions of the method of the proof 
given in Section 3 to treat the general many-body interactions. In the 
Appendix I present some technical points necessary to complete the proof 
of main result of this paper, stated as Theorem 1 in Section 2. 
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2. P R E L I M I N A R Y  D E F I N I T I O N S  A N D  F O R M U L A T I O N  OF 
T H E  R E S U L T  

2.1. Classical  Gases (21' 22) 

Let 12 be the collection of all finite or countable subsets of R a having 
no limit points in R a. 12 is provided with the weakest topology r in which 
the map 

7za: f2~ co~co(A)=-co~Ae12s(A  ) (2.1) 

in continuous for any open, bounded, Borel subset A c R a, where 12y(R d) 
[-respectively 12y(A)] is the collection of all finite subsets co c R  ~ (resp. 
co c A) with the point-to-point convergence topology Tf. The a-algebra(s) 
corresponding to z/ (-= Borel algebra) will be denoted by o~:(12s) [resp. 

o~f(12f( A ) ) =- ~f(A)] .  
The pair (12, z) then forms a polish space. (23) The corresponding Borel 

a-algebra is denoted by ~(Ra) .  In a similar fashion one defines the 
a-algebras : - (A) ,  where A is an arbitrary, Borel subset of R a. Clearly, 
~:~(AI )c~(A2)  provided A ~ c A  2 and moreover for A ~ u A 2 = A  with 
A~ n A 2 =  fZi one has ,~(A1)'~ ~(A1)Q,~(A2). 

Let us define on the a-algebra ~ ( R  a) the measure 

~6(A)= ~vol~{(x~,...,xOeR~/{x~,...,x,}eA} (2.2) 
n = O  

~ ( r  = 1 and z ~> 0 

This is the noninteractinig-gas Poisson measure with the chemical 
activity z. 

Now, let V= (V1, V>..., Vk,...) be a sequence of functions, each Vk 
being defined as a symmetric, measurable function on R ak. With the help 
of V we then define 

by 

E.: 

Z 
o ~ c o )  1 v O92, 

= C O n  O)l ~ ~ ,  

Vr,ol(co ) if col r ~ ,  co2 ~ ~3 

(2.3) 

otherwise 

where [col = card co. For  a given co E 12, denote by co(A) its restriction to the 
set A c R a. For r/E 12f and co ~ 12 let us define 

Ev(q [co) = lim Ev(~llco(A,)) (2.4) 
n ---~ ao 
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where (A,),  is an arbitrary, monotonic sequence of bounded subsets of R a 
such that U, A, = R d, if such limit exists. Now let A c R d be bounded and 
let co e/2; denote 

Z~(a')(z, fl)= ~ :c~(d~)exp-Ev(ttJ~l vco(A~)) (2.5) 
,a:  (a)  

u3("C) (z , /~ lA)  = [zo~(.,C)(z,/~)] 

x f= r~(dq) exp - E v ( q  [ ~t v co(A~)) (2.6) 
~-l(X)  

for any A ~o~(A), if the limits and integrals under consideration exist. 
Any probabilistic measure #(z, fi) on {O, y(RU)} is called the grand 

canonical Gibbs measure corresponding to the interaction V, chemical 
activity z, and (inverse) temperature fl > 0, iff: 

gcG (i) The limit (2.4) exists for almost every (w.r.t. the measure 
~| pair (q, e))~y(Ra)| 

gcG (ii) In the sense of measures we have 

# ~ #(A-)(Z, fll )=/~(z ,  fl)(.) (2.7) 

for every bounded A c R d, where ( - )  is the integration variable. The set 
of such measures is denoted by (#(z, fl, V). It is known that for the case of 
suitably regular interactions the set if(z, fl, V) is nonempty for any z t> 0 
and fl >/0. (2~'24) With some additional restrictions on V some uniqueness 
theorems are known. (2s'26) Finally, in the case of superstable interactions it 
is known that it is possible to select some special subset of ~(z, fl, V) of the 
so-called tempered Gibbs measures which has the structure of a Choquet 
simplex. This was originally pointed out by Ruelle {21) for the case of two- 
body interactions and then extended to arbitrary many-body superstable 
interactions in ref. 28. 

2.2. The  Resul ts  

In this paper it is assumed that V k >~ 0 for every k and moreover each 
Vk is short-ranged, i.e., 3dk < oo: 

V : Vk((X)k)-----O unless 
(x)k=(~, ...... ~) (2.8) 

max{dist(xi, xfl} < dk 
rj 

Moreover, it is assumed that d* = supk d~ < m. Then one has the following 
result. 
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' T h e o r e m  O. Assume that V i sa  nonnegative many-body interaction 
of shortrange, say d*<oo .  Then, for any z < e x p [ - - 2 V d ( d * ) ] ,  where 
Va(d* ) is the volume of the d-dimensional ball of radius d*, the set 
if(z, fl, V) consists of exactly one element v~(z, fl[-). 

The proof of this theorem is a byproduct of the proof of the following 
Theorem 1 and therefore will be not explained here. However, I would like 
to point out the simplicity of the arguments used, especially in the unique- 
ness part of it. If follows from the very definition of the set if(z, fl, V) that 
every element of it fulfills the so-called local Markov property, which 
means that for every bounded domain A c R d we have 

Eu{F.  a[ff(~?d.(A))} = E~,{FI ff(~?a.(A))}" E~,{a[ff(Oa.(A))} (2.9) 

where # e if(z, fl, V), F and G are bounded random variables measurable 
with respect to the o--algebra ~-(A), respectively, o~(AC-~?a.(A)), where 

d*(A) = {x r A ] dist(x, A) ~< d* }, and E u {-[-} denotes conditional expec- 
tation values. The main result of this paper consists in showing that the 
unique Gibbs measure voo(z, fl[-) from Theorem0 has the Markov 
property (2.9) also for unbounded domains A = R a. This is the so-called the 
global Markov property. 

As is well known, uniqueness or extremality of the locally Markov 
Gibbs measure does not yield automatically the global Markov property. 
For the discussion of this phenomenum see refs. 29-31. As was pointed out 
by F611mer, (32) in order to verify the global Markov property we have to 
show the so-called strong uniqueness for the measure v~(z, fl), which 
means the following. Let A c R d be an arbitrary domain in R a such that 
R a -  OA = s u s  where s and s  are the only two connected com- 
ponents. Let OJ-.(A)={xCg2 [dis(x, f2 ) _ < d * }  and let (An), be any 
sequence of bounded subsets of R d which tends to R d monotonously and 
by inclusion. Then the strong uniqueness means that we have the equality 

nlim Ev~(z,~){-[ ~(~?+.(A)) v ff(A~)} 

= Ev~z,~){-] ff(~?~-.(A)) } voo(z, fl)-almost surely (2.10) 

This is the strategy of the proof. Exactly such a strategy has been used in 
previous proofs of the global Markov property for a different class of 
systems in refs. 7, 10, 14-17, and 32. 

T h e o r e m  1. Assume that V i sa  nonnegative many-body interaction 
of range d * <  0o. Let z < exp[--2Vd(d*)]. Then the unique grand canoni- 
cal Gibbs measure voo(z, fl) has the global Markov property. 

Let X o = { X = ( X ~ 1 7 6  and let Oa.(.Zo)={x~Ra]O<~ 
x~ d*}. Then we have the following corollary. 
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Corollary. The exists a stationary Markov process ~t with the state 
space (2(Oa.(Zo)) such that v~(z, il) is its path space measure. The Markov 
semigroup k~ associated to ~t has a unique eigenvector which corresponds 
to the eigenvalue with the largest real part and this eigenvalue is separated 
by the nonzero gap from the rest of the spectrum. 

Remark. For d =  1 it can be extracted from ref. 33 that Theorem 1 is 
valid for every z >~ 0. 

To fix the idea, I restrict the proofs to the particular hyperplane Z 0. 
But it is evident that the proofs work also for any hypersurface Z ~ R a, 
thus yielding the proof of the global Markov property for ro~(z, B). 

3. PROOF OF THEOREM 1. THE CASE OF TWO-BODY 
INTERACTIONS 

In this section I specialize to the case when V= (0, 112, 0, 0,...), i.e., to 
the case of two-body interaction. I assume that II2 is spherically symmetric 
(for simplicity) as a function on R d with compact support of size r < 0% i.e., 
V2(Ix]) = 0 if Ix] > r. In the following I drop the subscript 2. This restric- 
tion is of pedagogical interest only since one has to deal then with a well- 
known Kirkwood-Salsburg operator for two-body interactions. In Sec- 
tion 5 I generalize the analysis below to the general multibody situation. 

The finite volume A, conditioned by ~o at G(Z'o) and by co'(A ~) at A ~, 
Gibbs measure VA(--I~(Or(Z'O)) V ~(A~)(CO V co'), is described completely 
by its correlation functions 

{p~(&(_r0)  c~ A) v r ' ill (:~ ) . )  } .  =, ...... 

which are given by the following formulas: 

p ~ , ~ o l ~ A ~  v o~,(.,C~(z ' i l l ( x ) . )  

= ( z ~ A ~  ~,~o~ v o~,~AC~(z ' i l ) ) -~ 

00 zm + n~ IA 
d(_y )m x z ~ - a ~ o ~ ( X ) ,  m~=O Or(.~o) 

x e x p - i l g ( ( x ) ,  v (y)m] (x), v (_Y)m v (o(~,(~'o) c~ A) v oJ'(A~)) (3.1) 

z~(A ~ ~,(~o)) v ~,~A~(z ' /3)  

= fa ~(dq)  exp - il6~ [ co(~r(Z'o) m A) v oJ'(AC)) 
( A  - -  O , ( z 0 ) )  

(3.2) 
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where n~ is the normalized version of ~ ;  for (x). n A n O~(Zo) r ~ and for 
(x). c~ A n co(O~(Zo)) r ~ they are defined by 

paA(ar(Zo)c~A) v co'(A~)(Z ' [3 I (X)D 

=J '0  if (X)n~Anco(Or(~Y',o))~(X)n 
(3.3) l l  if (x), c~ A n co(0~(Zo)) = (x), 

The measure voo(z,~[~(OAZo))(co) conditioned at the a-algebra 
o~(Or(L'o)) is uniquely determined by the thermodynamic limit (any of) of 
the correlation functions {p](~176 [31 (x),,)} with co'(A ~) = ~ .  

To verify the global Markov property of the measure v~(z, [3) it 
is sufficient to prove that all the thermodynamic limits of 
{p~(~(s0)~A) ~ o~'(A~)(Z '/71 (X)~)} as co' varies over the set f2 are the same as 
that with co'= ~ .  

Let B e be the Banach space of sequences of measurable functions 
f =  ( f . ) .=  ~,2 ..... where each f . :  R " a ~  R ~, equipped with the norm 

tlfU r = sup ~-n esssup [f.(x).r (3.4) 
n (X)n  E R nd 

Throughout this section I choose ~ = 1 (but see Section 4). To simplify the 
notation I will sometimes use the following abbreviations: FA(co)= 
co(0r(So) c~ A), F~(co) - F .  = R~(co), FA -- A - O,(Zo), and Fo~ = R d -  Or(So). 

Let 

~r~(,o): ~1 ~ 1  (3.5) 

be defined by 

(~r~176 

- f i g ( x ,  [ (x)~, v r~(co))  {f , ,_  l((x)~,_ 1) = e x p  

+ ~.. d a~(zo) n = l  

f o r m > l ; a n d  f o r m = l  

(~r~(~ 1 (X)l = exp - f l g ( x  I I r~(~o)) 

1 fR d(y) K(xl ](Y)~)f~((Y)m) X ~ a\a,.(.go) 
m = [  

(3.7) 
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Here 

(x )"  = (x:,. . . ,  x , , )  

K(xl y) = e ~v(,,-y)_ 1 

K(xl(y)m)= f i  X(xl y,) 
i ~ l  

(3.8) 

For a set A ~ R d let 

HA : ~1 -~ ~]1 
(3.9) 

(UAf) . (x) .= f i  XA(Xi) f.((X).) 
i = 1  

Then the correlation functions of the conditioned 
voo(z, fll ~(~?d(Z'0)))(~O) fulfills the following identities: 

Hr~r~(~)lz~ , ~J-m-zINr~)H r~o~r~(~)tzt , fl) + zHr ~(Fo~(Co)) (3.10) 

where 

P~t'~ f l )= {Pr|176 fl[ ( (x) , )} ,= 1.2 (3.11) 

measure 

c%~(F~(o))) = (exp -flg(x~ I Foo(o)), 0,..., 0,...) (3.12) 

I check that the identities (3.10) in a unique way determine p~(~ fl) at 
least for small z and moreover p~~176 fl) are limits of the corresponding 
finite-volume quantities pr~('~ fl) where the limit is understood com- 
ponentwise and locally uniform (i.e., uniform on compact sets). This is 
proved by the standard contraction map principle applied to the identities 
(3.10) and its corresponding finite-volume versions. 

I . emma  3.1. Let Vd(r ) be the volume of a d-dimensional ball with 
radius r. 

1. For Izl <exp[--2Vd(r)] the operator ~r~c~ is contractive 
in the space ~ ,  uniformly in ~o ~ ~,  and the relation (3.10) uniquely deter- 
mines the conditioned correlation functions pr~) (z ,  fl). 

2. For Izl <expE--2Vd(r)] the finite-volume conditioned correlation 
functions pr~) ( z ,  fl) tend componentwise and locally uniformly to the 
corresponding infinite-volume quantities p r ~ ) .  This holds for every co e ~. 

The proof will be omitted as not differing from that presented in 
ref. 34, Theorem 4.2.3. 
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The space .~a is the weak dual space to the Banach space * ~  consist- 
ing of sequences of measurable functions (qo)= (~0.).=1,2,... equipped with 
the norm 

*][(1) 1[1 = ~ f d(X-)n 1~gn((X)n)[ (3.13) 

Then the pair of spaces (*r N~) forms a dual pair of Banach spaces. (35) 
Now using a certain argument from the theory of dual pairs, I will prove 
the following result, which is key for the verification of the global Markov 
property of p~(z, 13). 

Proposition 3.2. Let /z[ < e x p [ - 2 V d ( r ) ] .  Then for any co', coef2 
fixed, we have 

lim pA r~(~ ~ ~ 13): pr'~(~ 13) 
ATR d 

(3.14) 

where the limit in (3.4) is taken componentwise and is uniform on compact 
subsets. 

ProoL The correlation functions p~(~)~ , (a , )  fulfill the following 
identity: 

+ ZC~A(FA(CO) v co(A')) (3.15) 

where the operator N; rA('~ v ~'(AO is defined by the formula 

= exp -flo~(xl ] (x)~, v FA(CO) v co '(A0){fro-l((X) 2) 

+ ~.. A-Od(~0))| ~ n = l  

] 
d(y)n K(x, [ (Y),)f~+m-l((X)~n V (y)n)I (3.16) 

and similarly for m = 1 

(~  rA(~o) v ~o'(A0 f ) ,  (xl) 

= e x p  --fig(x11FA(co) v co'(A0) 

m = i A -- Od(Xo)) | 
(3.17) 

822/55/1-2-13 



192 Gielerak 

Operators K rA(~) ~ ~~ and K r~{~) have the forms 

INr~(~) ~ ~'(A") = exp --~g(x~IFA v og'(AC)).~.Hr~ (3.18) 

where the operator e x p [ - / 3 g ( - 1 ) ]  acts as multiplication and the generic 
operator IN acts in N~ according to (3.17) and (3.18). 

The dual * ~ of the operator IN in the dual pair (~1, *N~) can be easily 
calculated, with the result 

(*IN0),~(Xm) = ~. dy K(yl(x)~) ~ + ~ - k ( Y  v (x)~-(x)k) (3.19) 
k = 0  d 

Now we observe that 

~< *11 *~(exp - /3e(Xl I(x) v F~(co))[exp - # g ( X l  I~o ' (AO)] (Hr .  - 1)4'11 ~ 

~< II IN'~(~ * II {exp [ - ~g(x~ 160'(A0)] - 1 } HrA tp Ill (3.20) 

Now it is not difficult to note that for any co'el2*, any compact 
A c R a -  Or(NO), and any short-ranged potential V, we have 

lim I[~(xl ~o'(A0)l l  L~(A> = 0 
A T R  d 

(3.21) 

whenever A T Ra in an appropriate way. From this and the last line (3.20) 
it follows easily that 

V . 

O~'EQ 

The strong convergence 
resolvents: 

s-lim ,~rA(~)v o~,(Ac) = ,~r~(o~) (3.22) 
AT Rd 

of (3.22) yields the strong convergence of the 

s-lira(1 - z  ,~ra(~o)v o~'(Ac))-i = (1 - z  * K ~ ( ~ ~  -1 (3.23) 
A~ R a 

assuming that the corresponding resolvents exists, which is true for [zl < 

e x p [ - 2 V a ( r ) ] .  
Now we are ready to prove 

V " *-e) lira prA~o~) v ,~'(A,)(Z ' f l )  = p r |  ' f l )  (3.24)  
oY ~.O A T Rd 
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assuming tz[ < exp[ -2Va( r ) ] .  For this, note 

V " <~, p9 ~ ~'~ ~)-p~(~ 
4,E *~ 

=z<O, ( 1 - - z ~  FA(O0) va]'(Ae)) I(~A(FA(o,) ) V (Ajt(AC)) 

- (1  - z ~ ( ~ ) )  -~ ~ ( F ~ o ( O ) )  > 

----Z<@, [(]--ZK5 A(~ 1 - - ( I - - z O { A  r~(m)) I c(oo(tO(/'oo((O))]> 

+z<~, (1-  z~9(~ v"(~'~)-~[~a(/'a(~o) v oo'(AC))-~o(r~(o~))]> 

---z<[(1 - z  ,~FA(~,)v ~ '(A~))-I  (1 - z  ,~r~{~))-~]~,  ~oo(roo(co))> 

+z<(1 - z  *KA r~(~) ~ ~'(A~))-hp, O~A(FA(c9) V ca'(AC))- ~oo(Foo(~)) > 

which shows the claimed convergence if we additionally note 

lim ~A(FA(cn)) v ~o'(A C) = ~oo(F~(~o)) 
A~ R d 

in the sense of Loo. 
I have used the identity 

* ( 1 - z A ) - l = ( 1 - z * A )  t 

(3.25) 

(3.26) 

(3.27) 

which holds in any dual pair of Banach spaces (see, e.g., ref. 35, w w 
Now we have to sharpen the proved *-weak convergence to the locally 

uniform, componentwise one. But this can be done by using the Mayer-  
Montroll identities. The details of this (presumable well-known) procedure 
are explained in the Appendix. QED 

4. STABLE INTERACTION WITH H A R D - C O R E  CUTOFF 

In this section I will try to relax the assumption that V2 is pure 
repulsive. However, in this case several complications arise, the main one 
of which is the question about bounds uniform in the boundary data on 
the corresponding Kirkwood-Salsburg operators. 

For stable interactions we have to choose a certain modification of the 
Kirkwood-Salsburg operator D{ r|176 as was pointed out by Ruelle. (34) Let 
J/g be an index juggling operator choosing the xi coordinate in such a way 
that for every n >/! we have 

S((X)m I (x)n)~- - 2 B  (4.1) 
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where B is the stability constant of the potential V. Then the modified 
Kirkwood-Salsburg operator ~r~(o~) is defined as the superposition 

~;r| = ~r~(o~) ~ d// (4.2) 

The first question arising is whether the operator ~ '  has a bounded dual 
in the pair (*~r ~r 

I_emma 4.1. There exists a bounded linear operator *Jg in the 
space *~e such that 

* ~ = ( ~ ) *  

Moreover, the operator *J/g is given by the formula 

*J/g= fl L nj (4.3) 
j - - 1  

where the operator V l and nj are defined in the following way. Let 

f2i(m) := {(X)meRd--Qa(Xo)l~((x,)l(X)m--(xik))>~ --2B} (4.4) 

and let zi(m) be the corresponding characteristic function of the set f2e(m ). 
Then we define 

fl(m) = z,(rn) z,(m (4.5) 
i 1 

The operators nj are defined as multiplication operators by O ( m - j +  1), 
where the O function is defined by O(k)=0 for k~<0 and O(k)= 1 for 
k>0 .  

ProoL By a simple calculation it is easy to check that 

'7' : ( ~ o , J / f ) = ( * J g t ~ o , f )  QED 

Remark. For similar calculations see ref. 36. I remark that the 
existence of the bounded dual operator in the dual pair does not follow 
automatically and needs to be proved. 

As a conclusion we have that the dual operator ,~(ae,(~0)) to the 
modified KS operator ~o~(oe,(s0)) exists. However, in order to apply the 
method of Section 3 to control the corresponding limits, one has to find 
estimates which are uniform in the boundary datas. More precisely, at 
present one does not known whether the KS identity 

p~O~'(r~)(z, /3) = ~a~.(zo ~)p~O~.(ro)) + z~oo(e)(Sd,(So)) (4.6) 
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determines the corresponding conditioned correlation functions in a unique 
way. The result is formulated as follows. 

Propos i t ion  4.2. For  every c~, a/~.Q there exists a number C(~o) 
such that whenever z < C(~o), we have 

*-z lim p~(ad . ( zo) )  v ~'(A~)(Z ' f l )  = p ~ O d . ( z o ) ) ( z  ' fl) 
A~ R d 

(4.7) 

But it is particularly easy to choice such a sequence of ~on ~ f2 that our 
estimates gives lim, ~ ~ C(c%)= 0. 

In order to overcome this problem, let us introduce the cutoff of the 
possible density of particles in 3d.(22o). This is obtained by adding to the 
potential V2 a hard-core potential V Hc defined by 

VrHC(x) = {O Oe for otherwise ]x[~r (4.8) 

Certainly we assume that r<d* =diam(supp V2). Then the admissible 
particle configurations are those for which the minimal distance between 
particles is greater then r. It follows that we should consider the whole 
problem on the restricted configuration space g2 r defined as a Borel subset 
of ~2 and composed of those configurations which fulfill the requirement 
stated above. 

The application of the methods of Section 3, Lemma 3.1 then leads to 
the proof of the following theorem. 

Theorem 4.1. For the potential of the form V= V2 + VP c where 
V2 is a short-ranged, finite, regular, stable potential with range equal to d* 
and stability constant B, and for 

[Z I ~< Cr(fl)-le ~ 

where 

d *  

Cr(fl)=2Vd(r) fl le -ev<x)- 1L dx 

O(r, d*, B ) =  -2 f l  B-- ( ' Va( d* !'] /? sup [ V2(x)[/-- 1, 
\ 2Ve(r) ] 

x e  I-r, d * ]  

there exists a unique grand canonical Gibbs measure v~(z, fl) on the space 
f2 r. This unique Gibbs measure possesses the global Markov property. 
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5. GENERAL,  M A N Y - B O D Y  REPULSIVE I N T E R A C T I O N S  

In this section I extend the proof to the general case of an interaction 
given by a sequence of many-body potentials (Vk)k= ~,2,... where each Vk is 
defined on s k and is almost surely nonnegative there. Moreover, letting d* 
denote the smallest number with the property 

60Y~k " Vk(c~ unless max{dist(x, ,xi)}<d~" 

60 = (X 1 ,..., Xk) 

let us assume that 

d* = sup dk* < ~ (5.1) 

The corresponding, finite-volume A, grand canonical Gibbs measure 
vA(drll~(~a(So))V.~(AC)}(co, co ') contitioned by coet2(Oa.(So)) at 
~(Oa.(So)) and by ~o' E I2(A C) at the a-algebra ~-(A ~) is described com- 
pletely by its correlation functions, which are defined by the formula 

p~60~ ~ 6o'~A~(z,/~l ( x ) . )  

= [ z S ~ o ,  ~ 6 0 , ~ % / ~ ) 3  , 

zk+m fA d(y)k Za - o~(Zo)(X). 
k = 0  �9 - -  d (270)  

x exp[ - /~e( (y )k  v (x).l (y)k v (x). v rA(~0) v c.'(A~))] (5.2) 

where now 

e(,o I,o') = y~ v~  v,,~(n v ,7') (5.3) 

q" = 60', t /" ~ ~ 

and Z r~('~ "~"(AC)(Z, fl) is the normalization factor. For (x). cO(Oa(So)), 
the corresponding correlation functions are defined to be eual to one if 
(x). = cO(da(So)) and equal to zero otherwise. 

Following the method of the ref. 37 (which I do not reproduce here), 
I derive the following identities that hold between the correlation functions 
(5.2): 

pSA(60 ) v r f l l  ( X l ) )  

= ZZA ~.,(zo)(X)l exp --/~g((X)ll Fa(~o) v co'(AC)) 

1 
• f r  ~ dy,~eF(x, DfbJ (y)k) pg(6o)v6o'(AC)(z, fll (y)k) (5.4) 
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and for n > 1 

pr,~(~o) v ~o'(AC)(z ' fll (x),)  

= ZZr~(X), exp - - f lg l ( (x ) ,  [ FA((,0 ) V ~o'(AC)) 

oo 1 
x k~o ~.~ IrAd(y)kfft~(X,](X)'[(y)k)pr~(~)v~'(A~)(Z, f i[(y)k V (X)') 

where the abbrevations as above have been used again. The kernel fit ~ is 
defined by 

o~(Xl[(X)k'(y)n)=~,(;)(--1)n--iG(Xl'(X)kV(y)i) (5.5) 
i=0 

~(xl (x),) = exp - f l  ~, g ( ( x )  v (X)q) (5.6) 
(X)q ~ (x)~ 

q>~l 

and finally 

g'((x),  I~o) = Y, g((X)q I~o) (5.7) 
(X)q= (x),: 
(xh = (X)q 

The generic operator ~rA(~)v ~'(0(AC)) for Eq. (5.4) acts in the space l l r A ~  1 
according to 

(14rA(,o) v ~'(AC)f)(x,) 

= ZHA HR~_ a~.(~o~ exp -- f lg((x) l  I FA(~0) V cg'(a~)) 

1 
f d(y)k ~ ( X l  Ir (Y)k) HA(HRa-aa.(~o,)(f)k(Y)k (5.8) 

k=,  

( K r ~ )  ,~ oJ(Ac)f),(x)" 

= ZI1AI1Rd O~*(zO exp - - f l g l ( ( x ) ,  [ FA(CO ) v oJ'(A~)) 

oo 1 t" 
X k~=l -~. J d(y)k ~ ( X  1 [(X)tn[ (y)k)(nAgRd Od*(Zo) f k )( Y ) k 

Defining 

~(r~(o~) v ~o'(A~)) 

=(ZA a~.(~o) eXp-- f l~((x)~]FA(~)voJ ' (AC)) ,O, . . . ,O, . . . )  (5.9) 
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we can rewrite identities (5.3) as 

= z~rA(~o) ,1 o~,(Ac) prA(~)v o~'(Ac)(Z ' fl) + ZeA(FA(o9) V C0'(A~)) (5.10) 

Lemma 5.1. Let Izl < e x p [ - 2 V a ( d * ) ] .  Then for any e)~f2* the 
operator Kr~2~ ~ ~ is contractive in the space HRd oa,(s0)N1 and Eq. (5.4) 
(with co'= ~ ,  A = R d) has a unique solution pr~(~')(z,/~) ~ N1. Moreover, 
the conditioned correlation functions {pr~(o))~ O(z,/?l (x),}~=l,2,... tend to 
pr~('~ ~) locally uniformly componentwise. 

The proof is standard and will be omitted here. 

P r o p o s i t i o n  5.2. Let Izl < e x p [ - 2 V a ( d * ) ] .  Then for every 
o), e) 'e  f2 we have the convergence 

pr~(~)(z, /~) = lim prA~C~ ~'(A~)(Z, ~) 
ATR a 

(5.11) 

where the limit is taken in the *-w topology of the space N~ and the 
convergence A "r R a means the convergence in the van Hove sense. 

Proof. The main arguments are the same as in the two-body poten- 
tial case. We look for the dual to the operator ~rA(o)~ os(A~)) in the dual 
Banach pair (*M1, M~) and show the strong convergence of this dual to the 
dual of K r~(~). 

Modulo the multiplicative part, the dual of the operator K r~(~ ~ o~'(A~) 
is given by 

('AA~J)(X)n= ~ (;)(--1)n-qfA dy~(y[(X)ql(X)n-(X)q) 
q=O 

• ~ l + n - q ( Y  V ((X)n--  (X)q)) (5 .12)  

From this it is easy to conclude 

s-lira *ka = *k~ (in HRd r~Ml) (5.13) ATR d 

For any compact A c R d -  F~  we have 

lim [l~l((x)nlFA(~)  v ~ ' (AC)) - -~I ( (x ) , IF~(~) I IL~(~)=O (5.14) A'f R d 

From (5.13) and (5.14) it follows that 

s-lim *K rA(~) v ~,(Ac))=, ~ ~;~(o~) 
ATR d 

in the space *(HRa_r~,~t).  
The rest of the argument is the same as in Section 3. QED 
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Now by the method of the Appendix, we increase the proved *-w con- 
vergence (5.11) to the locally uniformly, componentwise sense, which yields 
weak convergence of the corresponding Gibbs measures and proves 
Theorem 1. 

APPENDIX .  F R O M  THE * - W E A K  TO LOCALLY U I N I F O R M ,  
C O M  P O N E N T W l S E  C O N V E R G E N C E  

Iterating the procedure which leads to the identities of the type (5.9), 
we get 

p ACA(~o)v ~;(A~)(Z ' f i )=  dg Ara(,~)v ~o'(AC)(Z ' fl)prAA(O~),, ~o'(AC)(Z ' fl) (a. 1) 

where the operators d {  rA(~) v ~'(AC) are defined b y  

(igr~(o,) ~ ~o'(A~)f).(x)" 

= Z~)~A _ aa(So)(X), exp --/~g((x), [ ~o'(A") v FA((o)) 

x f 1/m!fA d(y)~M((x).](y)m)f~((y)m) 
m = 0 - -  8 d ( Z O )  

where the kernels M((xL  I(y)m) are given by 

f q Zm((X)p M((x)pl(Y)q)= = o ( l ) ( - 1 ) q  '(Y),) 

with 

(A.2) 

(A.3) 

(A.5) 

where C is some constant. This bound comes from simple geometric 
considerations taking into account the assumed short-distance behavior of 
(VO and formulas (A.3) and (A.4). From (A.5) it then follows that the 

I[M((X)p I (-)q)lt ~,<~-~(~o))~ ~ CP q 

m((X)pl (y)m)=-exp- f l  ~ V~:+t((x)k v (y),) (A.4) 
(x)k = (x)p 
(y)t = (y)~ 
k > ~ l , l > ~ l  

Fixing the configuration (X)p, we have that the maps 

(x)p ~ M((x)p I (-)q) 

are the maps from (R a -  •a(Zo)) | to the space LI((R a -  ~a(Zo)) | with 
the bound on the norm 
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vector {l/q! M ( ( x ) p l ( X ) q ) } q =  1 .... for each fixed (X)p belongs to the space 
*ill and we have the estimate on its norm 

M ( ( x ) p [  (y)q)  ~<exp O(1)p (A.6) 
q =  1,... 

Iterating now Eq. (5.11) with A = R  d and ~o'= ~ ,  we get similar identities 
for p~O~(z~ fl). 

Thus, we have 

p glO,) v ~,(A))(z ' ~1 ( x ) . )  - p~"(~)(z,  ~1 ( x ) . )  

= zn{exp - f lg((x) ,  I Fa(~o) v ~o(A0) 

- exp - f lg((x) ,  [ F~(co)) ZRd-0~(Z0)(X), } 

x ~ d(y)m M((x), I (Y)m) Pr~(~ z, fl[ (Y)m) 
R d _ Od(ZO) ) |  m = l  

+ z" exp --fle((x), I FAro) v og'(AC)) ZRd_ad(ZO)((X), ) 

l f( d(y)mM((x),l(Y)m) 
X ~.. R a-  Od(ZO)) m = l  

X (pl~a(O~)v o~'(Ac)(2 ' #[ ( Y m ) -  P~(~~ z, fl)) 

Now the claim follows easily from the proven *-weak convergence, fact 
(A.6), and the assumed decay of (Vk) ~. QED 
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